
Predictive Deep Learning for Flash Flood 
Management 

 
 

 January 2021 
 Final Report 

 Project number TR202023 
 MoDOT Research Report number cmr 21-001

PREPARED BY: 

Steven M. Corns, PhD 

Suzanna K. Long, PhD, PEM, F.ASEM 

Jacob Hale 

Bhanu Kanwar 

Lauren Price 

Missouri University of Science and Technology 

PREPARED FOR: 

Missouri Department of Transportation 

Construction and Materials Division, Research Section 



 

 

 

 
 
Predictive Deep Learning for Flash Flood Management 
 
Dr. Steven Corns, PhD 
Associate Professor 
Engineering Management and Systems 
Engineering Department 
Missouri University of Science and 
Technology 
 
Dr. Suzanna Long, PhD 
Professor and Department Chair 
Engineering Management and Systems 
Engineering Department 
Missouri University of Science and 
Technology 
 
Lauren Price 
Undergraduate Research Assistant 
Engineering Management and Systems 
Engineering Department 
Missouri University of Science and 
Technology 

Jacob Hale 
Graduate Research Assistant 
Engineering Management and Systems 
Engineering Department 
Missouri University of Science and 
Technology 
 
Bhanu Kanwar 
Graduate Research Assistant 
Engineering Management and Systems 
Engineering Department 
Missouri University of Science and 
Technology 
 
 
 
 

 

 

 

A Report on Research Sponsored by 

 

Missouri Department of Transportation and 

Mid-America Transportation Center 

 

 

December 2020  



 

 

 

TECHNICAL REPORT DOCUMENTATION PAGE  
1. Report No. 
cmr 21-001 

2. Government Accession No. 3. Recipient’s Catalog No. 

4. Title and Subtitle 
Predictive Deep Learning for Flash Flood Management 

5. Report Date 
December 2020 
Published: January 2021 
6. Performing Organization Code  
 

7. Author(s) 
Steven M. Corns, PhD ORCID: 0000-0002-3685-2892; Suzanna K. Long, PhD, 
PEM, F.ASEM, ORCID: 0000-0001-6589-5528; Jacob Hale; Bhanu Kanwar; Lauren 
Price 

8. Performing Organization Report No.  
 

9. Performing Organization Name and Address 
Department of Engineering Management and Systems Engineering 
Missouri University of Science and Technology 
600 W. 14th Street, Rolla, MO 65409 
 

10. Work Unit No. 
 
11. Contract or Grant No. 
MoDOT project # TR202023 

12. Sponsoring Agency Name and Address 
Missouri Department of Transportation (SPR-B)  
Construction and Materials Division 
P.O. Box 270 
Jefferson City, MO 65102 
 

13. Type of Report and Period Covered 
Final Report (April 10, 2020-December 
31, 2020) 
14. Sponsoring Agency Code 
 

15. Supplementary Notes 
Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. MoDOT research reports 
are available in the Innovation Library at https://www.modot.org/research-publications.  
 
16. Abstract 
This research was completed in tandem as a project funded through MoDOT and the Mid-America Transportation Center. It used 
deep learning methods, along with weather information from NOAA/National Weather Service and geospatial data from the USGS 
National Map and other public geospatial data sources, to develop forecasting tools capable of assessing the probability of flash 
flooding in high risk areas. These tools build on existing models developed by the USGS, FEMA, and others and were used to 
determine evacuation routing and detours to mitigate the potential for loss of life during flash floods. The project scope included 
analysis of publicly available data in Greene county in and around Springfield, MO as part of a pilot project in Missouri. This data 
was then used to determine the probability of flash flooding in order to model evacuation or detour planning modules that can be 
implemented to assure the safety of the community and highway personnel. These modules used existing rainfall data and weather 
forecasts in a three-day sliding window to include soil moisture in the flash flood predictions. The transportation safety or disaster 
planner can use these results to produce planning documents based on geospatial data and information to develop region-specific 
tools and response methods to potential flash flood events. 
17. Key Words 
Deep learning; Flood management; Evacuation routing and 
planning 

18. Distribution Statement 
No restrictions. This document is available through the 
National Technical Information Service, Springfield, VA 
22161.  

19. Security Classif. (of this report) 
Unclassified. 

20. Security Classif. (of this page) 
Unclassified. 

21. No. of Pages 
51 

22. Price 
 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 

https://www.modot.org/research-publications


 

iv 

 

Table of Contents 

LIST OF EXHIBITS ...................................................................................................................... V 

LIST OF ABBREVIATIONS ...................................................................................................... VII 

ACKNOWLEDGMENTS ......................................................................................................... VIII 

DISCLAIMER .............................................................................................................................. IX 

ABSTRACT ................................................................................................................................... X 

EXECUTIVE SUMMARY .......................................................................................................... XI 

1. LITERATURE REVIEW ....................................................................................................... 1 

2. METHODOLOGY ................................................................................................................. 6 

3. RESULTS AND DISCUSSION ........................................................................................... 23 

4. CONCLUSIONS................................................................................................................... 33 

5. LIMITATIONS AND FUTURE WORK ............................................................................. 34 

REFERENCES ............................................................................................................................. 35 
 
 

 

 



 

v 

 

List of Exhibits 

Exhibit 2-1. Model Framework ...................................................................................................... 6 

Exhibit 2-2. Storm Events Database User Interface ...................................................................... 7 

Exhibit 2-3. Storm Events Database Sample ................................................................................. 8 

Exhibit 2-4. Geographical Discrepancy Example .......................................................................... 8 

Exhibit 2-5. Flash Flood Locations ................................................................................................ 9 

Exhibit 2-6. Non-flash Flood Locations ........................................................................................ 9 

Exhibit 2-7. Lidar File Representation ......................................................................................... 10 

Exhibit 2-8. AOI Elevation Profile .............................................................................................. 11 

Exhibit 2-9. AOI Slope Profile .................................................................................................... 11 

Exhibit 2-10. AOI Aspect Profile ................................................................................................ 12 

Exhibit 2-11. AOI Curvature Profile............................................................................................ 12 

Exhibit 2-12. Final Visual Output ................................................................................................ 14 

Exhibit 2-13. Point Sampling Output Example ........................................................................... 15 

Exhibit 2-14. Flash Flood Data Point Distribution ...................................................................... 16 

Exhibit 2-15. Artificial Neural Network ...................................................................................... 17 

Exhibit 2-16. Logistic Regression ................................................................................................ 18 

Exhibit 2-17. Support Vector Machine ........................................................................................ 19 

Exhibit 2-18. Deep Learning Neural Network and Machine Learning Algorithms Framework . 20 

Exhibit 2-19. Open Street Map Example with Roads Highlighted .............................................. 21 

Exhibit 2-20. Original Road Network with Flowlines in Red ..................................................... 21 

Exhibit 2-21. Road Network With Roads Removed .................................................................... 22  



 

vi 

 

Exhibit 3-1. Greene County, Missouri ......................................................................................... 23 

Exhibit 3-2. Greene County Flash Flood Hotspot ....................................................................... 24 

Exhibit 3-3. Final Visual Output .................................................................................................. 25 

Exhibit 3-4. Artificial Neural Network Confusion Matrix .......................................................... 26 

Exhibit 3-5. Logistic Regression Confusion Matrix .................................................................... 26 

Exhibit 3-6. GridSearch Support Vector Machine Confusion Matrix ......................................... 27 

Exhibit 3-7. Case Study Visual .................................................................................................... 28 

Exhibit 3-8. Classification Results ............................................................................................... 29 

Exhibit 3-9. Histogram of Classification Scheme ........................................................................ 30 

Exhibit 3-10. Roads Removed for Simulation Highlighted in Yellow ........................................ 31 

Exhibit 3-11. James River Freeway Simulation Result ............................................................... 31 

Exhibit 3-12. West Sunshine Street Simulation Result................................................................ 32 

 

 

 

 

 

 

 

 

 

 



 

vii 

 

List of Abbreviations 

Alternating Decision Tree (ADT) 
Artificial Neural Network (ANN) 
Functional Tree (FT) 
Geographic Information System (GIS) 
Kernel Logistic Regression (KLR) 
Light Detection and Ranging (Lidar) 
Multilayer Perceptron (MLP) 
National Hydrography Dataset (NHD) 
National Oceanic and Atmospheric Administration (NOAA) 
National Transportation Dataset (NTD) 
National Weather Service (NWS) 
Quadratic Discriminant Analysis (QDA) 
S-band Doppler Weather Radar (SPOL) 
Short Message Service (SMS) 
Simulation of Urban Mobility (SUMO) 
Support Vector Machine (SVM) 
Support Vector Regression (SVR) 
United States Geological Survey (USGS) 
 
 
  



 

viii 

 

Acknowledgments  

This project builds upon previous work done by the United States Geological Survey and 

National Oceanic and Atmospheric Administration. The geospatial data was created by the 

United States Geological Survey and is available for public use, while the rainfall data was 

created by the National Oceanic and Atmospheric Administration and available for public use. 

The traffic simulator used for this work (Simulation of Urban Mobility) is an open source 

package made available by the German Aerospace Center, Institute of Transportation Systems. 



 

ix 

 

Disclaimer 

The opinions, findings, and conclusions expressed in this document are those of the 

investigators. They are not necessarily those of the Missouri Department of Transportation, U.S. 

Department of Transportation, or Federal Highway Administration. This information does not 

constitute a standard or specification. 

 



 

x 

 

Abstract 

This research was completed in tandem as a project funded through MoDOT and the Mid-

America Transportation Center. It used deep learning methods, along with weather information 

from NOAA/National Weather Service and geospatial data from the USGS National Map and 

other public geospatial data sources, to develop forecasting tools capable of assessing the 

probability of flash flooding in high risk areas. These tools build on existing models developed 

by the USGS, FEMA, and others and were used to determine evacuation routing and detours to 

mitigate the potential for loss of life during flash floods. The project scope included analysis of 

publicly available data in Greene county in and around Springfield, MO as part of a pilot project 

in Missouri. This data was then used to determine the probability of flash flooding in order to 

model evacuation or detour planning modules that can be implemented to assure the safety of the 

community and highway personnel. These modules used existing rainfall data and weather 

forecasts in a three-day sliding window to include soil moisture in the flash flood predictions. 

The transportation safety or disaster planner can use these results to produce planning documents 

based on geospatial data and information to develop region-specific tools and response methods 

to potential flash flood events. 
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Executive Summary 

This research uses publicly available geospatial data to create a historic flash flood database that 

is then used as an input for a deep learning model capable of classifying flash flood risk for 

discrete locations within an area of interest (AOI) as presented in Exhibit E-1. The project scope 

includes analysis of publicly available flash flood data for a subwatershed in Greene County, 

Missouri that frequently experiences flash floods. This data was procured from USGS, NOAA, 

and NWS. A framework is presented that extends the utility of standard flash flood susceptibility 

maps by adding a dynamic predictive component based on potential rainfall events. 

Flash flood susceptibility maps are not created with transportation-specific use cases 

involved. Consequently, there is no methodology available that provides both risk quantification 

and optimal rerouting 

guidance. The algorithms 

used in this research capture 

the complex relationship 

between geospatial 

characteristics and rainfall 

data to classify locations on 

the basis of their flash 

flood risk. Elevation, slope, aspect, and curvature constitute the geospatial data whereas day-of 

and prior rainfall observations represent the latter. Three machine learning models were used: 

artificial neural network, logistic regression, and support vector machine. The artificial neural 

Exhibit E-1. Flash Flood Risk for AOI in Greene County, MO 
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network exhibited superior performance with a prediction accuracy of 85.23%. At present, there 

are no flash flood prediction models being used by practitioners or local decision makers.  

An additional component of the framework is the determination of optimal rerouting 

protocols that takes into account in-route traffic and road segments at high risk for flash flood 

events. This feature provides transportation officials with critical information that can guide the 

deployment of resources in a timely manner to minimize risk exposure to motorists. Collectively, 

the framework presented here provides a suite of tools that are not currently in use at any level 

throughout the state. 
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1. Literature Review 

Flash floods are one of the most frequently occurring and dangerous natural disasters. Study of 

the phenomena has received widespread scholarly attention due to the loss of life and financial 

and material damage caused. Research studies typically consist of developing static flash flood 

susceptibility maps based on artificial intelligence models. However, there is no methodology in 

the literature that extends this approach to dynamic use cases. A review of research in flash flood 

susceptibility maps, artificial intelligence, and traffic simulation is conducted and used to 

construct the dynamic framework presented in section two. 

Flash Flood Susceptibility Maps 

A flash flood susceptibility map is a data visualization medium that improves the effectiveness of 

watershed management (Janizadeh et al., 2019). This is accomplished by generating a heat map 

of flash flood risk based on historical events and geospatial features within some area of interest. 

Methodological specifics vary, but the general framework is consistent.  

The following steps outline the general approach undertaken in the literature to create 

flash flood susceptibility maps. First, a flash flood inventory is created that consists of date, time, 

and location information of previous flash floods. A similar dataset is compiled for non-flash 

flood events to train a classification model. Second, geospatial data that influences flash flood 

events is gathered. Commonly used features include elevation and elevation-derived products 

such as slope, aspect, and curvature. These features are ‘static’ because they do not change over 

time. Alternatively, rainfall data is procured to capture the dynamic component of flash flood 

modelling. Lastly, statistical modeling, artificial intelligence approaches, or some hybrid 

ensemble are used to determine the relationship between model inputs and flash flood 
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susceptibility risk (Lopez and Rodriguez, 2020; Nguyen et al., 2020; Janizadeh et al., 2019; Bui 

et al., 2020; Bui et al., 2019; Ngo et al., 2018; Costache and Bui, 2019). The following section 

provides a brief overview of the literature regarding statistical and artificial intelligence 

modeling approaches used to generate flash flood susceptibility maps. 

Machine Learning and Deep Learning Methods 

Research efforts have been made to map the flash floods events and identify the regions prone to 

this natural hazard event. Saharia et al. (2016) relied on the flood events archived data for the last 

78 years to develop a flood severity model based on different geomorphological and 

climatological variables. The proposed model was then used to identify various flood hotspots 

and conduct seasonality-based analysis. Different machine learning models were tested to 

identify suitable models for flash flood susceptibility mapping by Janizadeh et al. (2019). 

Alternating decision tree (ADT), functional tree (FT), kernel logistic regression (KLR), 

multilayer perceptron (MLP), and quadratic discriminant analysis (QDA) algorithms were 

developed using historical data to develop and improve the existing flood mapping frameworks 

to update the current relief and rescue protocols. An improved real-time warning system was 

proposed by Acosta-Coli et al. (2018) to improve the existing warning methods for the pluvial 

flash floods triggered by heavy rainfall. A web-based application was implemented by the 

research team to elicit a timely response from the people during a potentially hazardous flash 

flood event.  

Due to advancements made in the field of data analysis and machine learning in recent 

years, it has become easier to implement suitable machine learning algorithms and therefore 

develop more robust flood forecasting model architectures. Precipitation data from a dual-
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polarization S-band Doppler weather radar (SPOL) was used as an input for the regression model 

by Lopez and Rodriguez (2020) to calculate timely warnings for various watersheds in the city of 

Sao Paulo, Brazil. A novel support vector regression (SVR) based model was proposed by Wu et 

al. (2019) to improve the lead times in the mountainous regions of China and develop better flash 

flood warning and response systems. Flash floods datasets from 1984 to 2012 were used to 

identify important variables needed for the model architecture to predict peak values for flood 

forecasting. A flash flood warning system using short message service (SMS) was also proposed 

by Castro et al. (2013) using the regression model based on water level and speed variables. This 

SMS based warning system is activated when the water level exceeds the safety threshold value 

so that the people living in the flood-prone areas can be made aware of the impending danger on 

a timely basis. This tool can also be used by the local authorities to prepare better flash flood 

management protocols and operations. Satellite-derived datasets were used by Chiang et al. 

(2007) along with the rain gauge measurements to devise a neural network-based hydrologic 

model that used the merged time-series dataset to analyze both intensity and pattern of the 

precipitation events. This model can be used to process the satellite-derived datasets for areas 

where gauge data points are scarce and develop respective flood forecasting models. 

Compared to other natural disasters, flash flood events are relatively hard to forecast 

which makes it very important to inspect and update the current forecasting approaches which 

can then be used by the concerned authorities to develop better flash flood management policies. 

Therefore, machine learning and deep learning provide a powerful tool to identify the complex 

relationships between flood influencing factors and flash flood risk quantification. The result of 

these classifications can be used to identify and remove flood-affected road segments from a 

transportation network for re-routing simulation as presented in the following section. 
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Traffic Simulation 

A traffic simulation is used to demonstrate how closing flood affected road segments would 

impact traffic flow. Simulating traffic involves creating a network that includes an origin-

destination matrix, vehicle speeds, vehicle types, speed limits, traffic lights, and the physical 

roads themselves. The Simulation of Urban Mobility software (SUMO) integrated with deep 

learning models has been used to predict traffic congestion and flow from Hurricane Harvey in 

2017 (Fan et al., 2020). In the simulation, the focus was major highways (50 km/hr and over). 

Corns et al. (2019) used the SUMO software to model optimal re-routing protocols for flood 

affected road segments near Valley Park, Missouri. SUMO’s capacity to integrate Python 

functions results in greater customization that improves the quality of the simulations. Therefore, 

SUMO is an ideal software to capture traffic dynamics in a flash flood context. The integration 

of Python with SUMO will be explained in the Methodology section.  

Summary 

A review of the literature revealed that flash flood susceptibility maps have begun receiving 

greater scholastic attention. The first step in creating these maps is developing a historic flash 

flood database. Some of the most commonly gathered data include elevation, elevation-derived 

products, and rainfall. NOAA maintains a database with specific information on various natural 

disasters including flash floods. However, flash flood affected road segment information must be 

parsed from narrative episodes provided by witnesses. This results in a time-consuming 

procedure that inhibits the development of a database that can be used for planning purposes. 

Therefore, there is an opportunity to build a database that sets a standard for future data 

collection efforts that can then be used as an input for state-of-the-art classification techniques. 
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Several of the flash flood susceptibility maps present in the literature were generated 

using sophisticated modelling techniques such as machine learning and deep learning. As the 

quantity and quality of data continues to increase, so too will the application of these methods. 

One shortcoming of these models is the lack of predictive capabilities provided in practical 

applications. A model capable of providing dynamic results as rainfall is reported will provide 

considerable utility to local decision makers. Once the model has identified high flash flood risk 

road segments, those roads can then be proactively removed from the road network. To model 

this decision, a simulation can be constructed that captures subsequent traffic behavior. The 

literature is full of studies addressing each of these problems independently, but no 

comprehensive methodology has been presented. The methodology provided in the next section 

addresses this gap. 
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2. Methodology 

The objective of this study is to provide emergency management professionals with a tool that 

quantifies flash flood risk at discrete locations of interest. The methodology presented in this 

section follows the sequence illustrated in Exhibit 2-1. Step 1 consists of developing a historic 

flash flood database using temporal and geospatial information of previous flash flood events. 

Step 2 involves the collection of explanatory data for the flash flood database developed. Step 3 

extracts and converts the procured explanatory data into a tabular format for processing. Step 4 

applies machine learning and deep learning techniques to predict flash flood risk of locations of 

interest. Lastly, Step 5 provides a traffic re-routing simulation based on the roads identified by 

the prediction model. The remainder of this section provides a litany to reproduce the results 

presented.

 

Exhibit 2-1. Model Framework 
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Develop Historic Flash Flood Database 

Development of a historic flash flood database consists of gathering information related to 

previous flash flood events. The National Oceanic and Atmospheric Administration (NOAA) 

maintains the Storm Events Database that provides this information (NOAA, 2020). Exhibit 2-2 

provides an example of the user interface provided. The tool provides the user with the ability to 

procure unique event type information at the county level resolution over a specified period. 

 

Exhibit 2-2. Storm Events Database User Interface 
 
 

Once this information is specified, the user can then download an Excel or comma 

separated value file that includes temporal and geospatial information. However, upon further 

inspection it is clear that the information provided is not consistent. Each data entry consists of 

unique latitude and longitudinal coordinates in addition to narrative episodes provided by the 

spotter responsible for the entry. Exhibit 2-3 provides an example of database entries for two 

events. Information provided pertaining to affected roads is highlighted in yellow. Exhibit 2-4 

provides a visual reference between the stated location of the event and the actual location of the 
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affected road given the information provided in the narrative. Due to this geographical 

discrepancy, each data entry must be investigated to determine the actual location of the flash 

flood affected road segments. 

EVENT ID BEGIN DATE LATITUDE LONGITUDE EVENT NARRATIVE EPISODE NARRATIVE 

5435706 1/12/05 37.2 -93.3   

A slow-moving storm system caused heavy rain to occur 
across much of southern and central Missouri.  This event 

followed quickly on the heels of a previous flood event 
that occurred from the 4th through the 6th of January, 

therefore soils were nearly saturated at the onset of the 
event.  The lack of January vegetation also contributed to 

increased runoff and flooding.  In Greene County, the 
primary areas that flooded were low water crossings and 

low-lying areas.  Other specific locations that were 
affected by flooding include, areas along Ward Branch 
Creek in Springfield, a section of Highway CC two miles 

west of Fair Grove, the intersection of Farm Road 235 and 
Highway E, the intersection of Farm Roads 231 and 2. 

5470179 8/21/05 37.2 -93.3 

A slow-moving thunderstorm 
with heavy rain caused the 
South Dry Sac Creek to rise 
out of its banks and flood a 
section of East Valley Water 

Mill Road in northeast 
Springfield.  Several other 

sections of Springfield 
experienced flash flooding, 
which prompted numerous 
water rescues by Springfield 
Fire and Police Departments.  
One house experienced six 

inches of flowing water. 

  

 

Exhibit 2-3. Storm Events Database Sample 
 

 

Exhibit 2-4. Geographical Discrepancy Example 
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After this procedure has been conducted for each of the entries, the resulting database can then 

be uploaded to a geographic information system (GIS) software for visualization. Exhibit 2-5 

provides the output of this procedure (generated in ArcGIS Pro) for an area of interest that will 

be discussed further in the next section. The red points represent the locations determined by the 

narrative episode investigation and are superimposed on a road network procured from the 

National Transportation Dataset (NTD) (USGS, 2020a). For model training purposes, a dataset 

consisting of non-flash flood locations must also be developed. The results of this procedure are 

illustrated in Exhibit 2-6 and a represented by green squares. 

 

Exhibit 2-5. Flash Flood Locations 
 

 

Exhibit 2-6. Non-flash Flood Locations 
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After the flash flood database is constructed, the next step is gathering flash flood explanatory 

data. The next section provides guidance on procuring and processing that data. 

Create Explanatory Data Layers 

Based on the literature, four geospatial features were identified as flash flood influencing factors: 

elevation, slope, aspect, and curvature. Elevation can be procured from the United States 

Geological Survey’s (USGS) National Map (USGS, 2020b). For the area of interest presented in 

the previous section, elevation products are available in light detection and ranging (Lidar) 

format. To generate the elevation profile, 135 files were downloaded as illustrated by Exhibit 2-

7. Each square represented in the 15x9 grid corresponds to a unique lidar file. This gridded 

visualization of the lidar data is commonly referred to as an LAS dataset. Using the LAS Dataset 

to Raster tool and clipping procedures, the gridded representation can then be converted into a 

raster elevation layer as seen in Exhibit 2-8. 

 

Exhibit 2-7. Lidar File Representation 
 



 

11 

 

 

Exhibit 2-8. AOI Elevation Profile 
 

Slope, aspect, and curvature layers can be quickly generated using the correspondingly named 

tools in a GIS software. Each layer requires the elevation layer presented in Exhibit 2-8 as an 

input. Exhibits 2-9 through 2-11 represent the outputs of this operation. 

 

Exhibit 2-9. AOI Slope Profile 



 

12 

 

 

 

Exhibit 2-10. AOI Aspect Profile 
 

 

Exhibit 2-11. AOI Curvature Profile 
 

 Elevation, slope, aspect, and curvature each represent static explanatory layers that do not 

change significantly over time. Alternatively, rainfall provides a dynamic input that varies. Each 

of the entries in the flash flood database is associated with a specific date. Therefore, rainfall data 

can be procured from the National Weather Service (NWS) Archive. Rainfall data from January 

1, 2005-June 27, 2017 is available in point format (NWS, 2020a). A nearest neighbor heuristic is 
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used to apply a rainfall amount to flash flood and non-flash flood locations. From June 28, 2017-

Present, rainfall data is available in a raster format (NWS, 2020b). In these instances, rainfall 

amount is assigned based on the underlying pixel value. Flash floods often occur quickly 

following a rainfall event. However, soil moisture before the causative rainfall event plays a 

significant role in the flash flood event. Therefore, rainfall data for each of the three days prior to 

the flash flood event is also captured to serve as a proxy for soil moisture. Once the rainfall 

amounts have been assigned, explanatory data layer values can be extracted using point sampling 

as described in the following section. 

Conduct Point Sampling 

After the flash flood database has been compiled and explanatory data layers have been 

generated, point sampling is the final step prior to classification models being applied. Point 

sampling consists of extracting data layer values at discrete locations. In this context, 

explanatory raster layer values for each of the discrete flash flood and non-flash flood locations 

are extracted and compiled in a tabular format. Using the ArcGIS Extract Multi Values to Points 

tool, this can be done quickly. Exhibit 2-12 is the final visual output. Exhibit 2-13 is a sample of 

the corresponding attribute table for the flash flood test set. 
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Exhibit 2-12. Final Visual Output 
 

Each data point in both the flash flood and non-flash flood datasets has a similar entry. ID is a 

unique identification number that denotes that point’s position in the dataset. Name refers to the 

original Storm Event’s Database identification number. Latitude and longitude are the 

coordinates for the entry. Date provides the start of the event. Each of the rainfall points 

corresponds to the observed rainfall at the entry. Summation of antecedent rainfall is the result of 

adding up all prior rainfall amounts. Curvature, aspect, slope, and elevation are the result of point 

sampling extractions explained earlier in this section. With the flash flood database now in 

tabular format it can be routinely used in an array of machine learning and deep learning 

classification tools. Model specifics are presented in the following section. 
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ID 1 
Name 22814a 

Latitude 37.15 
Longitude -93.31 

Date 2007-03-20 
Rainfall Day of (in) 0.39 

Rainfall 1 Day Before (in) 0.00 
Rainfall 2 Days Before (in) 0.01 
Rainfall 3 Days Before (in) 0.00 
Summation of Antecedent 

Rainfall (in) 0.01 

Curvature (dimensionless) 0.33 
Aspect (degrees) 227.36 
Slope (degrees) 1.05 
Elevation (m) 383.49 

 
Exhibit 2-13. Point Sampling Output Example 

 

Machine Learning and Deep Learning Models 

In order to identify points (with latitude and longitude coordinates) susceptible to flash flooding, 

different classification-based machine learning, and deep learning techniques were implemented 

on the output dataset obtained from the point sampling operation. The dataset consists of two 

classes, 0 and 1 which represent non-flash flood and flash flood labels, respectively. Artificial 

neural network (ANN), logistic regression, and support vector machine (SVM) algorithms were 

used to develop classification models and classify the binary labels into two different categories. 

The dataset contains a total of 350 points/observations with respective values for variables or 

features mentioned in Exhibit 2-13. Out of these 350 points, 185 points belong to class label 0 

i.e. non-flash flood points or locations whereas 165 points belong to label 1 i.e. flash flood points 

or locations as shown in Exhibit 2-14. 
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Exhibit 2-14. Flash Flood Data Point Distribution 
 

Exhibit 2-15 shows the artificial neuron network (ANN) developed to receive the output 

data from point sampling as input and perform the binary classification task to identify potential 

flash flood locations. The different layers of a neural network contain neurons that represent 

mathematical functions required to accept input data and generate output values for the succeeding 

layer. The neurons in the input layer receive the input data’s variables and pass it on to the hidden 

layer which applies the activation function to the received data before further passing its respective 

output values to the output layer. The output from the hidden layer is processed by the neurons in 

the output layer before generating a Boolean value for the classified label. For the binary 

classification task, the sigmoid activation function is utilized to generate the required output values 

in the range [0,1]. The output values generated by this sigmoid function in the final output layer 

of the neural network correspond to probability values of a given observation belonging to class 1 

or positive class representing flash flood-prone locations. By default, any output probability value 

below the threshold value of 0.5 is labeled as class 0 (non-flash flood-prone locations) and a value 

above 0.5 falls under class 1 (flash flood-prone locations). Apart from this default probability 
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threshold value of 0.5, different threshold values of 0.6, 0.7, 0.8, and 0.9 are also used to test the 

models and identify respective flash flood-prone locations belonging to the positive class 1. 

 

Exhibit 2-15. Artificial Neural Network 
 

A model based on the logistic regression model is also developed to analyze the variables 

from the 350 input data points and then generate the binary output variable based on the logistic 

function as displayed in Exhibit 2-16. The accuracy of this model is then compared with the 

performance of the above-mentioned neural network model to conduct further analysis. 



 

18 

 

 

Exhibit 2-16. Logistic Regression 
 

A third machine learning model, support vector machine (SVM) is also proposed and 

implemented for the classification task as exhibited in Exhibit 2-17. A support vector machine is 

a supervised learning algorithm that receives the labeled input data to further partition it into two 

different classes, class 0 and class 1. We can plot the available observations in an n-dimensional 

space (where ‘n’ represents the number of features or variables) and then identify the suitable 

hyperplane to distinguish between the distinct classes. In binary classification tasks, the hyperplane 

is a decision boundary that separates the two classes, and the support vectors are the data points 

adjacent to it. For the project, the input data is classified using support vector machine algorithms 

based on both linear and sigmoid kernels, respectively. A ‘GridSearch’ approach was also 

implemented to identify the optimum values of the support vector machine hyperparameters. 

Another support vector algorithm was then executed using the hyperparameter values obtained 

from the ‘GridSearch’ process. The performance metrics of both the support vector machine 
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models are analyzed and compared with the similar metrics from both artificial neural network 

and logistic regression models to choose the best classification model. 

 

Exhibit 2-17. Support Vector Machine 
 

The dataset derived from the point sampling process is inspected using Python 3.6 

programming language before conducting data analysis operations (data processing, data cleaning, 

and exploratory data analysis, etc.) to identify relevant variables for our models. The processed 

350 data points are divided between two different datasets, the training set, and the testing set. 

75% of the total dataset i.e. 262 observations are allocated to the training set and the remaining 

25% i.e. 88 observations are allotted to the other testing dataset. The training dataset consists of 

labeled variables information for 262 observations needed for training the models while the testing 

dataset is made up of variable information for the remaining 88 observations along with the 

respective truth values needed to test the accuracy of the classification models. Both training and 

testing datasets are then converted into suitable data formats to be used for analysis using artificial 
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neural network, logistic regression, and support vector machines as shown in Exhibit 2-18. In the 

next section, roads identified as flood affected by the best model are then removed from the road 

network in a simulation setting. 

 

Exhibit 2-18. Deep Learning Neural Network and Machine Learning Algorithms Framework 
 

Traffic Simulation 

The simulation used to reroute traffic based on the best classification model is used as an input 

for SUMO. After the neural network gave an output of 1 (flooded) or 0 (not flooded) a network 

was formed for the values given a “1”. The networks were exported from Open Street Maps 

(Exhibit 2-19) and converted to an xml document. The xml network was then edited using the 

text editor NetEdit. This application allows the user to edit the converted networks, for this 

report it was used to delete the roads that were predicted to flood (Exhibit 2-20). Once the 

networks had the appropriate roads removed a Python file was generated and integrated to assign 

“random trips” for the cars in the simulation. This was considered to be the standard flow of 

traffic. One the Python file is integrated a SUMO simulation was generated and data was 

extracted to predict the travel time. The travel time was then compared to the original travel time 
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i.e. if the roads were not flooded (Exhibit 2-21). In the next section a case study is presented that 

demonstrates methodological effectiveness. 

 

Exhibit 2-19. Open Street Map Example with Roads Highlighted 
 

 

Exhibit 2-20. Original Road Network with Flowlines in Red 
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Exhibit 2-21. Road Network with Roads Removed 
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3. Results and Discussion 

In consultation with key stakeholders, several counties in Missouri were identified as potential 

test sites. Ultimately, Greene County was chosen to demonstrate methodological efficacy given 

data availability and flash flood frequency. 

Study Area 

Greene County is located in the southwestern part of Missouri as illustrated by Exhibit 3-1 

(Benbennick, 2006). The county includes the Springfield Metropolitan Area with an estimated 

population of almost 170,000 residents (Census Bureau, 2020). 

 

 

Exhibit 3-1. Greene County, Missouri 
 

A population center of this size generally results in high traffic flow and significant economic 

operations. Therefore, flash floods pose a significant risk to motorists and the region’s economic 

livelihood. While rainfall is the most common flash flood inducing factor, it is generally 

dependent on watershed characteristics. Exhibit 3-2 presents the flash flood locations from the 

Storm Events Database for Greene County with respect to 12-digit hydrologic unit code 

boundaries (subwatershed) (USGS, 2020c). The purple line corresponds to the county outline 
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and the green lines delineate the subwatershed boundaries. Discrete flash flood locations are 

represented as a heat map to demonstrate the high frequency of flash floods within a specific 

subwatershed.  

 

Exhibit 3-2. Greene County Flash Flood Hotspot 
 

This evidence justifies the selection of this subwatershed as a test bed for the 

methodology presented. Exhibit 3-3 was created by following the steps presented in Section 2 for 

developing a historic flash flood database, creating explanatory data layers, and conducting point 

sampling for discrete locations. Explanatory data is then extracted in tabular format and used as 

an input in machine learning and deep learning models. The results of those procedures are 

presented in the next section. 
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Exhibit 3-3. Final Visual Output 
 

Machine Learning and Deep Learning Model Results 

Three different types of artificial intelligence models, artificial neural network (ANN), logistic 

regression, and support vector machine (SVM) are implemented to conduct the classification 

task and identify the locations prone to flash flooding events. The artificial neural network 

consists of 9 different input parameters or variables, the ‘Adam’ learning rate optimizer, and the 

‘sigmoid’ activation function. The hyperparameters, ‘epochs’ and ‘batch size’ are assigned 

values of 1000 and 10 respectively. The artificial neural network is run on the test data 

containing feature information for 88 locations and delivers a classification accuracy of 85.23%. 

The model correctly classified a total of 75 out of 88 locations and has an error rate of 14.77%. 

The confusion matrix is shown in Exhibit 3-4 and displays the model performance of this 

‘sigmoid’ based artificial neural network. Out of 88 total observations, the model identified 37 

locations that are prone to flash floods and assigned them class labels equal to one. The 
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remaining 51 observations were classified as non-flash flood-prone locations by the classifier. A 

total of 46 and 42 observations are labeled as true flash flood and non-flash flood locations 

respectively in the testing dataset. 

 

Exhibit 3-4. Artificial Neural Network Confusion Matrix 
 

A second logistic model is implemented using the same dataset with a resulting 

classification accuracy score of 75% which is less than the artificial neural network’s similar 

performance metric. Also, the error rate of this regression classifier has increased to 25%. Exhibit 

3-5 shows that as compared to the true positive (label 1) and true negative (label 0) class values of 

46 and 42 respectively, the logistic regression model classified 30 locations that are susceptible to 

flash flooding whereas 58 locations were predicted to have no flash flooding events. 

 

Exhibit 3-5. Logistic Regression Confusion Matrix 
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The support vector machine (SVM) classifiers based on both ‘linear’ and ‘sigmoid’ kernels 

performed worse than the other two classifiers and produced accuracy scores of 62.50% and 

59.09% respectively. Its hyperparameters (Misclassification cost C, Gamma and kernel) were then 

tuned using the GridSearch approach and the accuracy score of the model improved to 80.68% as 

shown by the confusion matrix in Exhibit 3-6. Here, the error rate of 19.32% is less than the error 

rate of the logistic regression model but more than the neural network’s error rate. 

 

Exhibit 3-6. GridSearch Support Vector Machine Confusion Matrix 
 

Finally, the artificial neural network-based classifier with the highest accuracy score of 85.23% is 

chosen to test the dataset containing randomly determined rainfall amounts for the selected test 

region of Greene County, Missouri.  

Case Study 

Given the accuracy of the classification model presented, it is appropriate to apply the model to 

locations that are of interest to local stakeholders. One such set of locations would be the 

intersection of flowlines, extracted from the National Hydrography Dataset (NHD), and the road 

network. Exhibit 3-7 provides a visualization of these locations (220 points) superimposed on the 

elevation profile for the AOI. 
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Exhibit 3-7. Case Study Visual 
 
 

Using the methodology presented, the explanatory data layers and subsequent point 

sampling can be quickly compiled. However, this case study is intended to simulate future 

events. Therefore, the rainfall amount is randomly generated and assigned to each of the points. 

Classification results for each of the points are presented in the following section. 

Case Study Classification Results 

A test dataset with random rainfall amounts for 220 different locations in Greene County is fed 

into the artificial neural network model with the highest accuracy score of 85.23% to identify the 

locations susceptible to flash flood events. Using the ‘sigmoid’ activation function based binary 

classifier, a set of locations is identified for different probability threshold values of 0.5 (50%), 

0.6 (60%), 0.7 (70%), 0.8 (80%) and 0.9 (90%). The model automatically assigns the class label 

value of 1 to all the observations above these threshold values and classifies them as potential 

flash flood-prone locations. This test dataset is analyzed and processed before passing it in the 

selected artificial neural network. Based on different data processing operations, the number of 

relevant variables or features in this test dataset is reduced to 9 which is the same number of 

variables used to test and compare different classification models previously. After implementing 
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the neural network on this new dataset, the classifier identified 22, 17, 14, 13, and 12 flash flood-

prone locations for the different probability threshold values of 50%, 60%, 70%, 80%, and 90%, 

respectively. Model classification results are visually presented in Exhibit 3-8. Additionally, a 

histogram of classifications is also provided in Exhibit 3-9. An example simulation is provided 

for a set of road segments that possess flash flood risk probabilities greater than 90%. 

 
 

 
 

Exhibit 3-8. Classification Results 
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Exhibit 3-9. Histogram of Classification Scheme 
 

Case Study Traffic Simulation Results 

For this simulation part of the James River Freeway and West Sunshine Street were chosen to be 

removed in the simulation (highlighted in yellow in Exhibit 3-10).  These roads were chosen 

because both points had a predictability percentage of 90% or higher.  

The results of removing the two roads increased the average travel time and average wait 

time (Exhibit 3-11 and 3-12). The simulation where the networks were eliminated are in blue and 

the original network is depicted in green. The average travel time shows the average time it took 

a car to travel from their origin to their final destination. The average wait time shows the 

average amount of time a car had to wait at an intersection (due to congestion) during their travel 

to their destination.  
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Exhibit 3-10. Roads Removed for Simulation Highlighted in Yellow 
 
 

 
 

Exhibit 3-11. James River Freeway Simulation Result 
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Exhibit 3-12. West Sunshine Street Simulation Result 
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4. Conclusions 

A model framework based on high-quality publicly available datasets is developed and 

implemented to identify distinct locations in Greene County, Missouri which are prone to flash 

flooding. A combination of flood, hydrological, geospatial, and transportation datasets is relied 

upon to identify the roads which might be inaccessible due to flash flood events. The proposed 

framework provides updated critical information to the local authorities in charge of the 

emergency operations so that they can implement crucial public safety measures. 

The model evaluates precipitation and geospatial information for various locations in the 

selected test region and utilizes an accurate deep learning algorithm to assign flash flood risk 

probabilities for potential flash flood-prone points. In comparison to other classification models, 

the deep learning algorithm provides a more detailed option to analyze the interactions between 

different variables and pinpoint vulnerable road segments. The inclusion of diverse geospatial 

features in the dataset further improves the neural network’s capability to make accurate 

predictions. Additionally, the framework’s ability to suggest alternative options to reroute traffic 

provides city planners with additional information to advise and assist commuters. Timely 

warnings and information can then be disseminated through reliable public information systems 

to warn commuters to avoid damaged or submerged road segments. 
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5. Limitations and Future Work 

The results presented here demonstrate the utility of the methodology provided. 

However, there are some model limitations that constitute areas of future work. Development of 

the historic flash flood database was dependent on written narrative episodes provided in the 

Storm Events Database. Some of the information provided was inconsistent with actual road 

listing information. For example, on one occasion state routes and farm roads were used 

interchangeably. One solution to this problem is for witnesses or local authorities to provide 

specific coordinate information on flood affected road segments. This action would reduce the 

time required to build the database and the potential for clerical errors.  

Machine learning and deep learning models require copious amounts of data. Out of 350 

total data points, the flash flood locations were represented by 165 entries. These methods tend 

to require significantly greater quantities of data, and the accuracy of the model underscores this 

fact. As data gathering methods are improved and more data becomes available, the accuracy of 

the model presented will continue to improve. The result will be a more powerful tool at the 

disposal of local decision makers.  

Providing local decision makers with a simulation of traffic behavior is an important part 

of the methodology presented. However, the simulation is constrained on the basis of how many 

intersections can be considered. Simulation results are then presented as a series of findings 

instead of one singular output. This sort of software limitation could be addressed by improving 

the capacity of the software chosen or selecting an alternative way to conduct the simulation. 

Addressing each of the areas would substantively improve the quality of the results presented. 
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